Tag Archives: robot arm reducer

China factory High Quality RV Reducer Cycloidal Gearbox for Robot Arm gearbox adjustment

Product Description

Details Photos:

1.It is equipped with an angular contact ball bearing, so it can support the external load with the rigid moment and large allowable moment
2.Easy assemble, small vibration
3.It can reduce the motor straight junction (input gear) and inertia
4.Large torsional rigidity
5.Strong impact resistance (500% of rated torque)
6.The crankshaft is supported by 2 columns in the reducer
7.Excellent starting efficiency & Small wear and long service life
8.Small backlash (1arc. Min.) & Use rolling bearing
9.Strong impact resistance (500% of rated torque)
10.The number of simultaneous engagements between RV gear and needle teeth is large

Advantages:
1. High precision, high torque
2. Dedicated technical personnel can be on the go to provide design solutions
3. Factory direct sales fine workmanship durable quality assurance
4. Product quality issues have a one-year warranty time, can be returned for replacement or repair

Company profile:

HangZhou CHINAMFG Technology Co., Ltd. was established in 2014. Based on long-term accumulated experience in mechanical design and manufacturing, various types of harmonic reducers have been developed according to the different needs of customers. The company is in a stage of rapid development. , Equipment and personnel are constantly expanding. Now we have a group of experienced technical and managerial personnel, with advanced equipment, complete testing methods, and product manufacturing and design capabilities. Product design and production can be carried out according to customer needs, and a variety of high-precision transmission components such as harmonic reducers and RV reducers have been formed; the products have been sold in domestic and global(Such as USA, Germany, Turkey, India) and have been used in industrial robots, machine tools, medical equipment, laser processing, cutting, and dispensing, Brush making, LED equipment manufacturing, precision electronic equipment, and other industries have established a good reputation.
In the future, Hongwing will adhere to the purpose of gathering talents, keeping close to the market, and technological innovation, carry CHINAMFG the value pursuit in the field of harmonic drive&RV reducers, seek the common development of the company and the society, and quietly build itself into a CHINAMFG brand with independent intellectual property rights. Quality supplier in the field of precision transmission”.

Strength factory:

Our plant has an entire campus The number of workshops is around 300 Whether it’s from the production of raw materials and the procurement of raw materials to the inspection of finished products, we’re doing it ourselves. There is a complete production system

RV Parameter:

Rated Table
Output rotational speed (rpm) 5 10 15 20 25 30 40 50 60
Model Speed ratio code Transmission Ratio(R) Output Torque  (Nm)
/
Enter the capacity (kW
Rotation of axes Housing rotation
RV-6E 31 31 30 101
/ 0.07
81
/ 0.11
72
/ 0.15
66
/ 0.19
62
/ 0.22
58
/ 0.25
54
/ 0.30
50
/ 0.35
47
/ 0.40
43 43 42
53.5 53.5 52.5
59 59 58
79 79 78
103 103 102
RV-20E 57 57 56 231
/ 0.16
188
/ 0.26
167
/ 0.35
153
/ 0.43
143
/ 0.50
135
/ 0.57
124
/ 0.70
115
/ 0.81
110
/ 0.92
81 81 80
105 105 104
121 121 120
141 141 140
161 161 160
RV-40E 57 57 56 572
/ 0.40
465
/ 0.65
412
/ 0.86
377
/ 1.05
353
/ 1.23
334
/ 1.40
307
/ 1.71
287
/ 2.00
271
/ 2.27
81 81 80
105 105 104
121 121 120
153 153 152
RV-80E 57 57 56 1,088
/ 0.76
885
/ 1.24
784
/ 1.64
719
/ 2.01
672
/ 2.35
637
/ 2.67
584
/ 3.26
546
/ 3.81
517
/ 4.33
81 81 80
101 101 100
121 121 120
153 1(153) 1(152)
RV-110E 81 81 80 1,499
/ 1.05
1,215
/ 1.70
1,078
/ 2.26
990
/ 2.76
925
/ 3.23
875
/ 3.67
804
/ 4.49
   
111 111 110
161 161 160
175 1227/7 1220/7
RV-160E 81 81 80 2,176
/ 1.52
1,774
/ 2.48
1,568
/ 3.28
1,441
/ 4.02
1,343
/ 4.69
1,274
/ 5.34
     
101 101 100
129 129 128
145 145 144
171 171 170
RV-320E 81 81 80 4,361
/ 3.04
3,538
/ 4.94
3,136
/ 6.57
2,881
/ 8.05
2,695
/ 9.41
2,548
/ 10.7
     
101 101 100
118.5 118.5 117.5
129 129 128
141 141 140
171 171 170
185 185 184
RV-450E 81 81 80 6,135
/ 4.28
4,978
/ 6.95
4,410
/ 9.24
4,047
/ 11.3
3,783
/ 13.2
       
101 101 100
118.5 118.5 117.5
129 129 128
154.8 2013/13 2000/13
171 171 170
192 1347/7 1340/7
Note: 1. The allowable output speed is affected by duty cycle, load, and ambient temperature. When the allowable output speed is above NS1, please consult our company about the precautions.
2. Calculate the input capacity (kW) by the following formula.
Input capacity (kW) =(2π*N*T)/(60*η/100*10*10*10)   N: output speed (RPM)
T: output torque (nm)
η =  75: reducer efficiency (%)
 The input capacity is the reference value.
3. When using the reducer at a low temperature, the no-load running torque will increase, so please pay attention when selecting the motor.
(refer to p.93 low-temperature characteristics)

T0
Rated torque(Remark .7)
N0
Rated output speed
K
Rated life
TS1
Allowable starting and stopping torque
TS2
Instantaneous maximum allowable torque
NS0
Allowable maximum output speed
(Remark .1)
Backlash Empty distance MAX. Angle transmission error MAX. A representative value of starting efficiency MO1
Allowable moment
(Remark .4)
MO2
Instantaneous maximum allowable moment
Wr
Allowable radial load
(Remark .10)
               I
Converted value of inertia moment input shaft
(Remark .5)
Weight
(Nm) (rpm) (h) (Nm) (Nm) (r/min) (arc.sec.) (arc.min.) (arc.sec.) (%) (Nm) (Nm) (N) (kgm2) (kg)
58 30 6,000 117 294 100 1.5 1.5 80 70 196 392 2,140 2.63×10-6 2.5
2.00×10-6
1.53×10-6
1.39×10-6
1.09×10-6
0.74×10-6
167 15 6,000 412 833 75 1.0 1.0 70 75 882 1,764 7,785 9.66×10-6 4.7
6.07×10-6
4.32×10-6
3.56×10-6
2.88×10-6
2.39×10-6
412 15 6,000 1,571 2,058 70 1.0 1.0 60 85 1,666 3,332 11,594 3.25×10-5 9.3
2.20×10-5
1.63×10-5
1.37×10-5
1.01×10-5
784 15 6,000 1,960 Bolt tightening 3920 70 1.0 1.0 50 85 Bolt fastening 2156 Bolt tightening Bolt tightening 12988 8.16×10-5 Bolt tightening 13.1
6.00×10-5
4.82×10-5
Pin combination 3185 Pin combination 1735 Pin combination 2156 Pin combination 1571 Pin combination 12.7
3.96×10-5
2.98×10-5
1,078 15 6,000 2,695 5,390 50 1.0 1.0 50 85 2,940 5,880 16,648 9.88×10-5 17.4
6.96×10-5
4.36×10-5
3.89×10-5
1,568 15 6,000 3,920 Bolt tightening 7840 45 1.0 1.0 50 85 3,920 Bolt tightening 7840 18,587 1.77×10-4 26.4
1.40×10-4
1.06×10-4
Pin and use 6615 Pin and use 6762
0.87×10-4
0.74×10-4
3,136 15 6,000 7,840 Bolt tightening 15680 35 1.0 1.0 50 80 Bolt tightening 7056 Bolt tightening 14112 Bolt tightening 28067 4.83×10-4 44.3
3.79×10-4
3.15×10-4
2.84×10-4
Pin combination 12250 Pin combination 6174 Pin and use 1571 Pin combination 24558
2.54×10-4
1.97×10-4
1.77×10-4
4,410 15 6,000 11,571 Bolt tightening 22050 25 1.0 1.0 50 85 8,820 Bolt tightening 17640 30,133 8.75×10-4 66.4
6.91×10-4
5.75×10-4
5.20×10-4
Pin and use 18620 Pin and use 13524
4.12×10-4
3.61×10-4
3.07×10-4
4. The allowable torque will vary according to the thrust load. Please confirm by the allowable moment line diagram (p.91).
5. The value of inertia moment is the value of the reducer body. The moment of inertia of the input gear is not included.
6. For moment stiffness and torsion stiffness, please refer to the calculation of inclination angle and torsion angle (p.99).
7. Rated torque refers to the torque value reflecting the rated life at rated output speed, not the data showing the upper limit of load. Please refer to the glossary (p.81) and product selection flow chart (p.82).
8. If you want to buy products other than the above speed ratio, please consult our company.
9. The above specifications are obtained according to the company’s evaluation method. Please confirm that the product meets the use conditions of carrying real aircraft before use.
10. When a radial load is applied to dimension B, please use it within the allowable radial load range.
11. 1 RV-80e r = 153 is only output shaft bolt fastening type( P.20,21)

Exhibition:

APPLICATIONS:

FQA:
Q: What should I provide when I choose a gearbox/speed reducer?
A: The best way is to provide the motor drawing with parameters. Our engineer will check and recommend the most suitable gearbox model for your reference.
Or you can also provide the below specification as well:
1) Type, model, and torque.
2) Ratio or output speed
3) Working condition and connection method
4) Quality and installed machine name
5) Input mode and input speed
6) Motor brand model or flange and motor shaft size
 

Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step
Samples:
US$ 600/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cycloidal gearbox

Materials Used in Manufacturing Cycloidal Gearboxes

Cycloidal gearboxes are constructed using a variety of materials to ensure durability, strength, and efficient operation. Some common materials used include:

  • Steel: Steel is a popular choice due to its high strength and durability. It can withstand heavy loads and provides excellent wear resistance, making it suitable for industrial applications.
  • Aluminum: Aluminum is chosen for its lightweight properties and corrosion resistance. It’s often used in applications where weight is a concern, such as aerospace and robotics.
  • Cast Iron: Cast iron offers good heat dissipation and is known for its high resistance to wear and shock. It’s commonly used in heavy-duty applications that require high torque and strength.
  • Alloys: Various alloy combinations can be used to enhance specific properties such as corrosion resistance, heat resistance, and strength.
  • Plastics and Composites: In some cases, plastic or composite materials may be used, particularly in applications where low noise, lightweight construction, and corrosion resistance are essential.

The material selection depends on factors like the application’s torque, speed, environmental conditions, and desired performance characteristics. Each material offers a unique set of advantages, allowing cycloidal gearboxes to be customized to meet diverse industrial needs.

cycloidal gearbox

Maintenance Requirements for Cycloidal Gearboxes

Maintaining cycloidal gearboxes is essential to ensure their optimal performance and longevity. Here are some maintenance practices to consider:

  • Lubrication: Regular lubrication is crucial to prevent wear and friction between moving parts. Use high-quality lubricants recommended by the gearbox manufacturer.
  • Inspections: Regularly inspect the gearbox for signs of wear, damage, or oil leakage. Address any issues promptly to prevent further damage.
  • Cleaning: Keep the gearbox clean and free from debris that could interfere with its operation. Cleanliness helps prevent contamination and wear.
  • Torque Checks: Periodically check the tightness of fasteners and bolts to ensure they are properly secured. Loose fasteners can lead to misalignment and reduced performance.
  • Seal Maintenance: Check and maintain seals to prevent oil leakage. Damaged seals should be replaced promptly to avoid lubricant loss.
  • Temperature Monitoring: Monitor the operating temperature of the gearbox to ensure it remains within the recommended range. Excessive heat can lead to premature wear.
  • Alignment: Ensure that the gearbox is properly aligned with other components to prevent misalignment-related issues.
  • Regular Service: Follow the manufacturer’s recommended service intervals for more in-depth inspections and maintenance tasks.

Regular and proactive maintenance can extend the lifespan of cycloidal gearboxes, minimize downtime, and maintain their efficiency and performance over time.

cycloidal gearbox

Disadvantages of Using a Cycloidal Gearbox

While cycloidal gearboxes offer various advantages, they also come with some disadvantages that should be considered:

  • Lower Efficiency at High Speeds: Cycloidal gearboxes can experience a decrease in efficiency at high speeds due to increased friction and rolling resistance.
  • Complex Design: The internal arrangement of pins, lobes, and bearings can result in a relatively complex design, which may lead to higher manufacturing costs and maintenance challenges.
  • Limited Gear Ratio Range: Cycloidal gearboxes might have limitations in terms of achieving very high gear ratios, which can impact their suitability for certain applications.
  • Cost: The specialized design and precision manufacturing involved in producing cycloidal gearboxes can lead to higher upfront costs compared to other gearbox types.
  • Noise Generation: While generally quieter than some other types of gearboxes, cycloidal gearboxes can still produce noise during operation, which might need to be addressed in noise-sensitive applications.
  • Availability: Cycloidal gearboxes might not be as widely available as other gearbox types, potentially leading to longer lead times for procurement and replacement parts.
  • Limited Backlash Adjustability: While cycloidal gearboxes have minimal backlash, adjusting or fine-tuning the backlash might be more challenging compared to other gearbox types.

Despite these disadvantages, cycloidal gearboxes remain a valuable choice for specific applications where their unique advantages outweigh the drawbacks.

China factory High Quality RV Reducer Cycloidal Gearbox for Robot Arm   gearbox adjustment	China factory High Quality RV Reducer Cycloidal Gearbox for Robot Arm   gearbox adjustment
editor by CX 2023-09-25

China Standard 6 Axis Robot Controller Cycloidal Pin Wheel RV Gear Reducer Robot Arm Robot Joints Gearbox RV-E synchromesh gearbox

Product Description

Details Photos:

1.It is equipped with an angular contact ball bearing, so it can support the external load with the rigid moment and large allowable moment
2.Easy assemble, small vibration
3.It can reduce the motor straight junction (input gear) and inertia
4.Large torsional rigidity
5.Strong impact resistance (500% of rated torque)
6.The crankshaft is supported by 2 columns in the reducer
7.Excellent starting efficiency & Small wear and long service life
8.Small backlash (1arc. Min.) & Use rolling bearing
9.Strong impact resistance (500% of rated torque)
10.The number of simultaneous engagements between RV gear and needle teeth is large

Advantages:
1. High precision, high torque
2. Dedicated technical personnel can be on the go to provide design solutions
3. Factory direct sales fine workmanship durable quality assurance
4. Product quality issues have a one-year warranty time, can be returned for replacement or repair

Company profile:

HangZhou CZPT Technology Co., Ltd. was established in 2014. Based on long-term accumulated experience in mechanical design and manufacturing, various types of harmonic reducers have been developed according to the different needs of customers. The company is in a stage of rapid development. , Equipment and personnel are constantly expanding. Now we have a group of experienced technical and managerial personnel, with advanced equipment, complete testing methods, and product manufacturing and design capabilities. Product design and production can be carried out according to customer needs, and a variety of high-precision transmission components such as harmonic reducers and RV reducers have been formed; the products have been sold in domestic and global(Such as USA, Germany, Turkey, India) and have been used in industrial robots, machine tools, medical equipment, laser processing, cutting, and dispensing, Brush making, LED equipment manufacturing, precision electronic equipment, and other industries have established a good reputation.
In the future, Hongwing will adhere to the purpose of gathering talents, keeping close to the market, and technological innovation, carry CZPT the value pursuit in the field of harmonic drive&RV reducers, seek the common development of the company and the society, and quietly build itself into a CZPT brand with independent intellectual property rights. Quality supplier in the field of precision transmission”.

Strength factory:

Our plant has an entire campus The number of workshops is around 300 Whether it’s from the production of raw materials and the procurement of raw materials to the inspection of finished products, we’re doing it ourselves. There is a complete production system

Parameter:

Rated Table
Output rotational speed (rpm) 5 10 15 20 25 30 40 50 60
Model Speed ratio code Transmission Ratio(R) Output Torque  (Nm)
/
Enter the capacity (kW
Rotation of axes Housing rotation
RV-6E 31 31 30 101
/ 0.07
81
/ 0.11
72
/ 0.15
66
/ 0.19
62
/ 0.22
58
/ 0.25
54
/ 0.30
50
/ 0.35
47
/ 0.40
43 43 42
53.5 53.5 52.5
59 59 58
79 79 78
103 103 102
RV-20E 57 57 56 231
/ 0.16
188
/ 0.26
167
/ 0.35
153
/ 0.43
143
/ 0.50
135
/ 0.57
124
/ 0.70
115
/ 0.81
110
/ 0.92
81 81 80
105 105 104
121 121 120
141 141 140
161 161 160
RV-40E 57 57 56 572
/ 0.40
465
/ 0.65
412
/ 0.86
377
/ 1.05
353
/ 1.23
334
/ 1.40
307
/ 1.71
287
/ 2.00
271
/ 2.27
81 81 80
105 105 104
121 121 120
153 153 152
RV-80E 57 57 56 1,088
/ 0.76
885
/ 1.24
784
/ 1.64
719
/ 2.01
672
/ 2.35
637
/ 2.67
584
/ 3.26
546
/ 3.81
517
/ 4.33
81 81 80
101 101 100
121 121 120
153 1(153) 1(152)
RV-110E 81 81 80 1,499
/ 1.05
1,215
/ 1.70
1,078
/ 2.26
990
/ 2.76
925
/ 3.23
875
/ 3.67
804
/ 4.49
   
111 111 110
161 161 160
175 1227/7 1220/7
RV-160E 81 81 80 2,176
/ 1.52
1,774
/ 2.48
1,568
/ 3.28
1,441
/ 4.02
1,343
/ 4.69
1,274
/ 5.34
     
101 101 100
129 129 128
145 145 144
171 171 170
RV-320E 81 81 80 4,361
/ 3.04
3,538
/ 4.94
3,136
/ 6.57
2,881
/ 8.05
2,695
/ 9.41
2,548
/ 10.7
     
101 101 100
118.5 118.5 117.5
129 129 128
141 141 140
171 171 170
185 185 184
RV-450E 81 81 80 6,135
/ 4.28
4,978
/ 6.95
4,410
/ 9.24
4,047
/ 11.3
3,783
/ 13.2
       
101 101 100
118.5 118.5 117.5
129 129 128
154.8 2013/13 2000/13
171 171 170
192 1347/7 1340/7
Note: 1. The allowable output speed is affected by duty cycle, load, and ambient temperature. When the allowable output speed is above NS1, please consult our company about the precautions.
2. Calculate the input capacity (kW) by the following formula.
Input capacity (kW) =(2π*N*T)/(60*η/100*10*10*10)   N: output speed (RPM)
T: output torque (nm)
η =  75: reducer efficiency (%)
 The input capacity is the reference value.
3. When using the reducer at a low temperature, the no-load running torque will increase, so please pay attention when selecting the motor.
(refer to p.93 low-temperature characteristics)

T0
Rated torque(Remark .7)
N0
Rated output speed
K
Rated life
TS1
Allowable starting and stopping torque
TS2
Instantaneous maximum allowable torque
NS0
Allowable maximum output speed
(Remark .1)
Backlash Empty distance MAX. Angle transmission error MAX. A representative value of starting efficiency MO1
Allowable moment
(Remark .4)
MO2
Instantaneous maximum allowable moment
Wr
Allowable radial load
(Remark .10)
               I
Converted value of inertia moment input shaft
(Remark .5)
Weight
(Nm) (rpm) (h) (Nm) (Nm) (r/min) (arc.sec.) (arc.min.) (arc.sec.) (%) (Nm) (Nm) (N) (kgm2) (kg)
58 30 6,000 117 294 100 1.5 1.5 80 70 196 392 2,140 2.63×10-6 2.5
2.00×10-6
1.53×10-6
1.39×10-6
1.09×10-6
0.74×10-6
167 15 6,000 412 833 75 1.0 1.0 70 75 882 1,764 7,785 9.66×10-6 4.7
6.07×10-6
4.32×10-6
3.56×10-6
2.88×10-6
2.39×10-6
412 15 6,000 1,571 2,058 70 1.0 1.0 60 85 1,666 3,332 11,594 3.25×10-5 9.3
2.20×10-5
1.63×10-5
1.37×10-5
1.01×10-5
784 15 6,000 1,960 Bolt tightening 3920 70 1.0 1.0 50 85 Bolt fastening 2156 Bolt tightening Bolt tightening 12988 8.16×10-5 Bolt tightening 13.1
6.00×10-5
4.82×10-5
Pin combination 3185 Pin combination 1735 Pin combination 2156 Pin combination 1571 Pin combination 12.7
3.96×10-5
2.98×10-5
1,078 15 6,000 2,695 5,390 50 1.0 1.0 50 85 2,940 5,880 16,648 9.88×10-5 17.4
6.96×10-5
4.36×10-5
3.89×10-5
1,568 15 6,000 3,920 Bolt tightening 7840 45 1.0 1.0 50 85 3,920 Bolt tightening 7840 18,587 1.77×10-4 26.4
1.40×10-4
1.06×10-4
Pin and use 6615 Pin and use 6762
0.87×10-4
0.74×10-4
3,136 15 6,000 7,840 Bolt tightening 15680 35 1.0 1.0 50 80 Bolt tightening 7056 Bolt tightening 14112 Bolt tightening 28067 4.83×10-4 44.3
3.79×10-4
3.15×10-4
2.84×10-4
Pin combination 12250 Pin combination 6174 Pin and use 1571 Pin combination 24558
2.54×10-4
1.97×10-4
1.77×10-4
4,410 15 6,000 11,571 Bolt tightening 22050 25 1.0 1.0 50 85 8,820 Bolt tightening 17640 30,133 8.75×10-4 66.4
6.91×10-4
5.75×10-4
5.20×10-4
Pin and use 18620 Pin and use 13524
4.12×10-4
3.61×10-4
3.07×10-4
4. The allowable torque will vary according to the thrust load. Please confirm by the allowable moment line diagram (p.91).
5. The value of inertia moment is the value of the reducer body. The moment of inertia of the input gear is not included.
6. For moment stiffness and torsion stiffness, please refer to the calculation of inclination angle and torsion angle (p.99).
7. Rated torque refers to the torque value reflecting the rated life at rated output speed, not the data showing the upper limit of load. Please refer to the glossary (p.81) and product selection flow chart (p.82).
8. If you want to buy products other than the above speed ratio, please consult our company.
9. The above specifications are obtained according to the company’s evaluation method. Please confirm that the product meets the use conditions of carrying real aircraft before use.
10. When a radial load is applied to dimension B, please use it within the allowable radial load range.
11. 1 RV-80e r = 153 is only output shaft bolt fastening type( P.20,21)

Exhibition:

APPLICATIONS:

FQA:
Q: What should I provide when I choose a gearbox/speed reducer?
A: The best way is to provide the motor drawing with parameters. Our engineer will check and recommend the most suitable gearbox model for your reference.
Or you can also provide the below specification as well:
1) Type, model, and torque.
2) Ratio or output speed
3) Working condition and connection method
4) Quality and installed machine name
5) Input mode and input speed
6) Motor brand model or flange and motor shaft size
 

Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step
Samples:
US$ 600/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cycloidal gearbox

Suitability of Cycloidal Gearboxes for High-Torque Applications

Cycloidal gearboxes are well-suited for high-torque applications due to their unique design and mechanical advantages. Here’s why they are suitable:

  • Multiple Engagement Points: Cycloidal gearboxes have multiple teeth in contact at any given moment, distributing the load over a larger area. This reduces wear and stress on individual teeth, making them capable of handling high torque.
  • High Load-Carrying Capacity: The design of the cycloidal mechanism, with its large number of pins and rollers, provides high load-carrying capacity. This makes them capable of transmitting significant torque without failure.
  • Tight Tolerances: The precision and tight tolerances in the construction of cycloidal gearboxes ensure smooth and efficient power transmission even under heavy loads.
  • Compact Design: Cycloidal gearboxes achieve high torque in a relatively compact size. This is particularly advantageous in applications where space is limited.
  • High Gear Ratio: Cycloidal gearboxes can achieve high gear ratios, allowing them to convert lower input speeds into higher output torque, which is essential in high-torque applications.

These factors make cycloidal gearboxes a reliable choice for various high-torque applications across industries such as heavy machinery, robotics, material handling, and more.

cycloidal gearbox

Use of Cycloidal Gearboxes in Precision Applications

Cycloidal gearboxes are well-suited for precision applications due to their unique design and capabilities. Here’s why they are used in precision settings:

  • High Positional Accuracy: Cycloidal gearboxes offer high positional accuracy, making them suitable for applications that require precise positioning and movement.
  • Backlash Reduction: The design of cycloidal gearboxes minimizes backlash, ensuring that there is minimal play between gears. This is crucial for maintaining accuracy in precision applications.
  • Smooth and Controlled Motion: Cycloidal gearboxes provide smooth and controlled motion with minimal vibration, which is essential for delicate operations and precision machinery.
  • Compact Design: Their compact design allows cycloidal gearboxes to be integrated into tight spaces without sacrificing performance. This is especially valuable in applications where space is limited.
  • Repeatable Performance: Cycloidal gearboxes offer consistent and repeatable performance, which is vital for maintaining precision over multiple cycles.
  • Low Backlash: The low backlash characteristic of cycloidal gearboxes ensures that there is minimal lost motion, contributing to their precision performance.
  • High Torque Density: Despite their compact size, cycloidal gearboxes can handle high torque loads, making them suitable for applications that require both precision and power.
  • Reduced Wear: The rolling contact design of cycloidal gears reduces wear and extends the lifespan of the gearbox, which is crucial for precision applications that demand consistent performance over time.

Overall, cycloidal gearboxes are a reliable choice for precision applications that require accurate positioning, controlled motion, and consistent performance.

cycloidal gearbox

Principle of Cycloidal Gearing

Cycloidal gearing is a mechanism that utilizes the unique shape of cycloidal discs to achieve motion transmission. The principle involves the interaction between two main components: the input disc and the output disc.

The input disc has lobes with pins, while the output disc has lobes with matching holes. The lobes on both discs are not perfectly circular but are shaped in a cycloidal profile. As the input disc rotates, the pins on its lobes engage with the holes in the output disc’s lobes.

As the input disc rotates, the pins move along the cycloidal paths, causing the output disc to rotate. The interaction between the pins and the holes results in smooth and continuous motion transfer. The unique shape of the cycloidal profile ensures that there is always at least one point of contact between the pins and the holes, allowing for efficient torque transmission and reduced wear.

Cycloidal gearing provides advantages such as high torque capacity, compact size, and precision motion. However, due to the complex shape of the components and the continuous engagement, manufacturing and assembly of cycloidal gearboxes can be intricate.

China Standard 6 Axis Robot Controller Cycloidal Pin Wheel RV Gear Reducer Robot Arm Robot Joints Gearbox RV-E   synchromesh gearbox	China Standard 6 Axis Robot Controller Cycloidal Pin Wheel RV Gear Reducer Robot Arm Robot Joints Gearbox RV-E   synchromesh gearbox
editor by CX 2023-09-06

China High Torque RV Reducer Cycloidal Gearbox for Robot Arm cycloidal drive motor

Merchandise Description

Particulars Images:

1. Hollow mechanism, which can insert cables inside of the reducer, so as to recognize the space-saving design and style of the gadget
2. Constructed-in mechanism of the primary bearing: the dependability is enhanced and the complete cost is decreased
3. Angular get in touch with ball bearings are put in, so they can help exterior masses. Since of its large rigidity and large instant bearing capacity, it can be applied to rotating shafts It can decrease the number of components needed Simple installation
four.2-phase reduction system: modest vibration, small gD2, the slow revolution speed of RV gear, lowered vibration, decreased motor immediate junction (input gear), and inertia
5. Double column help system: large torsional rigidity Robust affect resistance (500% of rated torque) The crankshaft can be supported by 2 columns
6. Rolling get in touch with system: superb beginning efficiency Modest wear and long service daily life Tiny backlash (1arc. Min.) Use of rolling bearings
seven. Needle gear system: tiny backlash (1arc. Min.), robust affect resistance (five hundred% of rated torque), and more simultaneous meshing of RV equipment and needle teeth

Advantages:
1. Large torsional rigidity, substantial torque
two. Focused complex staff can be on the go to offer design solutions
3. Manufacturing facility immediate sales fine workmanship sturdy good quality assurance
4. Product top quality issues have a one-year guarantee time, can be returned for alternative or mend

Firm profile:

HangZhou CZPT Technologies Co., Ltd. was established in 2014. Based mostly on extended-expression accumulated encounter in mechanical design and style and producing, various sorts of harmonic reducers have been developed in accordance to the different requirements of buyers. The organization is in a stage of rapid improvement. , Gear and personnel are constantly expanding. Now we have a group of skilled technical and managerial personnel, with innovative equipment, comprehensive testing strategies, and product manufacturing and layout abilities. Item design and style and creation can be carried out in accordance to customer requirements, and a assortment of high-precision transmission parts these kinds of as harmonic reducers and RV reducers have been fashioned the merchandise have been sold in domestic and world-wide(This kind of as United states, Germany, Turkey, India) and have been utilized in industrial robots, machine resources, health care tools, laser processing, chopping, and dispensing, Brush generating, LED equipment production, precision digital equipment, and other industries have recognized a excellent reputation.
In the future, Hongwing will adhere to the purpose of collecting abilities, maintaining close to the marketplace, and technological innovation, carry CZPT the worth pursuit in the discipline of harmonic drive&RV reducers, look for the typical advancement of the company and the society, and quietly develop by itself into a CZPT brand with unbiased intellectual property legal rights. High quality provider in the discipline of precision transmission”.

Energy manufacturing facility:

Our plant has an total campus The quantity of workshops is around 300 Whether it really is from the production of uncooked components and the procurement of raw materials to the inspection of completed products, we’re undertaking it ourselves. There is a total production system

HST-I Parameter:

Rating desk
Output velocity (rpm) 5 ten 15 twenty twenty five 30 40 50 sixty
Model Speed ratio code R
Speed ratio
Output torque (nm)
Input ability (kw)
Axis rotation Shell rotation
RV-10C 27 27 26 136
/ .09
111
/ .16
98
/ .21
90
/ .twenty five
eighty four
/ .29
80
/ .34
seventy three
/ .forty one
68
/ .47
sixty five
/ .fifty four
RV-27C 36.fifty seven 1,390/38 1352/38 368
/ .26
299
/ .forty two
265
/ .fifty five
243
/ .68
227
/ .seventy nine
215
/ .ninety
197
/ 1.10
184
/ 1.29
174
/ 1.46
RV-50C 32.fifty four one,985/61 1924/sixty one 681
/ .48
554
/ .seventy seven
490
/ 1.03
450
/ 1.26
420
/ 1.47
398
/ 1.67
366
/ 2.04
341
/ 2.38
 
RV-100C 36.seventy five 36.seventy five 35.75 1,362
/ .ninety five
1,107
/ 1.fifty five
980
/ 2.05
899
/ 2.fifty one
841
/ 2.94
796
/ 3.33
730
/ 4.08
   
RV-200C 34.86 one,499/forty three 1456/43 2,724
/ 1.ninety
two,215
/ 3.09
1,960
/ 4.eleven
one,803
/ 5.04
1,686
/ 5.88
one,597
/ 6.69
     
RV-320C 35.61 two,778/seventy eight 2700/78 4,361
/ 3.04
three,538
/ 4.ninety four
three,136
/ 6.57
two,881
/ 8.05
2,690
/ 9.forty one
       
RV-500C 37.34 three,099/83 3016/eighty three 6,811
/ 4.75
5,537
/ 7.seventy three
4,900
/ ten.26
4,498
/ twelve.fifty six
         
Note: 1. The allowable output speed is impacted by obligation cycle, load, and ambient temperature. When the allowable output velocity is over NS1, please seek advice from our firm about the safeguards.
2. Compute the enter potential (kW) by the pursuing formula.
Input capability (kW)=2π*N*T/60*η/a hundred*ten*10*10 N: output pace (RPM)
T: output torque (nm)
η =  75: reducer efficiency (%)
The input ability is the reference value.
three. When using the reducer at a minimal temperature, the no-load working torque will boost, so make sure you pay out interest when picking the motor.
(refer to lower-temperature traits)

T0
Rated torque
(be aware. 7)
N0
Rated output speed
K
Rated lifestyle
TS1
Allowable commencing and halting torque
TS2
Instantaneous maximum allowable torque
NS0
Allowable highest output speed
(Be aware 1)
Backlash Empty variety MAX. Angle transfer Error MAX. Commence performance signifies the value MO1
MO1. Permissible moment (Notice.4)
MO2
Momstant moment Permissible minute
Wr
Allowable radial load (Note.9)
I
Converted price of inertia moment enter shaft
(notice. 5)
Second of inertia I
(I = GD2 / 4) common heart gear
bodyweight
(Nm) (rpm) (h) (Nm) (Nm) (r/min) (arc.sec.) (arc.min.) (arc.sec.) (%) (Nm) (Nm) (N) (kgm2) (kgm2) (kg)
ninety eight fifteen six,000 245 490 eighty 1. 1. 70 seventy five 686 one,372 5,755 1.38×10-five .678×10-3 4.6
264.six 15 6,000 662 1,323 60 1. one. 70 80 980 one,960 6,520 .550×10-four .563×10-3 8.5
490 15 6,000 1,225 Bolt fastening 2,450 50 1. 1. 60 75 1,764 3,528 9,428 1.82×10-four 0.363×10-two 14.6
By means of-hole bolt fastening 1,960
980 15 6,000 2,450 Bolt fastening 4,900 40 1. 1. 50 80 2,450 4,900 11,802 0.475×10-3 0.953×10-2 19.five
By way of-hole bolt fastening 3,430
1,960 15 6,000 4,900 Bolt fastening 9,800 30 1. 1. 50 80 8,820 17,640 31,455 1.39×10-3 1.94×10-two 55.6
Via-hole bolt fastening 7,350
three,136 15 6,000 seven,840 15,680 twenty five 1. 1. 50 85 20,580 39,200 57,087 .518×10-two .405×10-1 seventy nine.five
4,900 fifteen six,000 12,250 24,five hundred 20 1. 1. 50 80 34,300 78,four hundred eighty two,970 .996×10-2 one.014×10-one 154
 
4. The allowable torque will fluctuate in accordance to the thrust load. Make sure you verify by the allowable second line diagram.
five. For moment stiffness and torsion stiffness, you should refer to the inclination angle and torsion angle calculation.
six. Rated torque refers to the torque price reflecting the rated life at rated output velocity, not the info showing the higher restrict of load. Make sure you refer to the glossary (p.81) and item choice stream chart (p.eighty two).
7. The previously mentioned specifications are acquired according to the firm’s analysis strategy. Please affirm that the product meets the use situations of carrying actual aircraft just before use.
8. When the radial load is within dimension B, you should use it inside of the allowable radial load assortment.

Applications:

FQA:
Q: What must I supply when I select a gearbox/speed reducer?
A: The ideal way is to supply the motor drawing with parameters. Our engineer will verify and advise the most suited gearbox model for your reference.
Or you can also give the beneath specification as properly:
one) Type, product, and torque.
2) Ratio or output velocity
three) Operating problem and relationship technique
four) Quality and installed equipment identify
five) Input manner and input speed
six) Motor manufacturer product or flange and motor shaft size
 


/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step

###

Samples:
US$ 600/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Available

|


###

Rating table
Output speed (rpm) 5 10 15 20 25 30 40 50 60
Model Speed ratio code R
Speed ratio
Output torque (nm)
Input capacity (kw)
Axis rotation Shell rotation
RV-10C 27 27 26 136
/ 0.09
111
/ 0.16
98
/ 0.21
90
/ 0.25
84
/ 0.29
80
/ 0.34
73
/ 0.41
68
/ 0.47
65
/ 0.54
RV-27C 36.57 1,390/38 1352/38 368
/ 0.26
299
/ 0.42
265
/ 0.55
243
/ 0.68
227
/ 0.79
215
/ 0.90
197
/ 1.10
184
/ 1.29
174
/ 1.46
RV-50C 32.54 1,985/61 1924/61 681
/ 0.48
554
/ 0.77
490
/ 1.03
450
/ 1.26
420
/ 1.47
398
/ 1.67
366
/ 2.04
341
/ 2.38
 
RV-100C 36.75 36.75 35.75 1,362
/ 0.95
1,107
/ 1.55
980
/ 2.05
899
/ 2.51
841
/ 2.94
796
/ 3.33
730
/ 4.08
   
RV-200C 34.86 1,499/43 1456/43 2,724
/ 1.90
2,215
/ 3.09
1,960
/ 4.11
1,803
/ 5.04
1,686
/ 5.88
1,597
/ 6.69
     
RV-320C 35.61 2,778/78 2700/78 4,361
/ 3.04
3,538
/ 4.94
3,136
/ 6.57
2,881
/ 8.05
2,690
/ 9.41
       
RV-500C 37.34 3,099/83 3016/83 6,811
/ 4.75
5,537
/ 7.73
4,900
/ 10.26
4,498
/ 12.56
         
Note: 1. The allowable output speed is affected by duty cycle, load, and ambient temperature. When the allowable output speed is above NS1, please consult our company about the precautions.
2. Calculate the input capacity (kW) by the following formula.
Input capacity (kW)=2π*N*T/60*η/100*10*10*10 N: output speed (RPM)
T: output torque (nm)
η =  75: reducer efficiency (%)
The input capacity is the reference value.
3. When using the reducer at a low temperature, the no-load running torque will increase, so please pay attention when selecting the motor.
(refer to low-temperature characteristics)

###

T0
Rated torque
(note. 7)
N0
Rated output speed
K
Rated life
TS1
Allowable starting and stopping torque
TS2
Instantaneous maximum allowable torque
NS0
Allowable maximum output speed
(Note 1)
Backlash Empty range MAX. Angle transfer Error MAX. Start efficiency represents the value MO1
MO1. Permissible moment (Note.4)
MO2
Momstant moment Permissible moment
Wr
Allowable radial load (Note.9)
I
Converted value of inertia moment input shaft
(note. 5)
Moment of inertia I
(I = GD2 / 4) standard center gear
weight
(Nm) (rpm) (h) (Nm) (Nm) (r/min) (arc.sec.) (arc.min.) (arc.sec.) (%) (Nm) (Nm) (N) (kgm2) (kgm2) (kg)
98 15 6,000 245 490 80 1.0 1.0 70 75 686 1,372 5,755 1.38×10-5 0.678×10-3 4.6
264.6 15 6,000 662 1,323 60 1.0 1.0 70 80 980 1,960 6,520 0.550×10-4 0.563×10-3 8.5
490 15 6,000 1,225 Bolt fastening 2,450 50 1.0 1.0 60 75 1,764 3,528 9,428 1.82×10-4 0.363×10-2 14.6
Through-hole bolt fastening 1,960
980 15 6,000 2,450 Bolt fastening 4,900 40 1.0 1.0 50 80 2,450 4,900 11,802 0.475×10-3 0.953×10-2 19.5
Through-hole bolt fastening 3,430
1,960 15 6,000 4,900 Bolt fastening 9,800 30 1.0 1.0 50 80 8,820 17,640 31,455 1.39×10-3 1.94×10-2 55.6
Through-hole bolt fastening 7,350
3,136 15 6,000 7,840 15,680 25 1.0 1.0 50 85 20,580 39,200 57,087 0.518×10-2 0.405×10-1 79.5
4,900 15 6,000 12,250 24,500 20 1.0 1.0 50 80 34,300 78,400 82,970 0.996×10-2 1.014×10-1 154
 
4. The allowable torque will vary according to the thrust load. Please confirm by the allowable moment line diagram.
5. For moment stiffness and torsion stiffness, please refer to the inclination angle and torsion angle calculation.
6. Rated torque refers to the torque value reflecting the rated life at rated output speed, not the data showing the upper limit of load. Please refer to the glossary (p.81) and product selection flow chart (p.82).
7. The above specifications are obtained according to the company’s evaluation method. Please confirm that the product meets the use conditions of carrying real aircraft before use.
8. When the radial load is within dimension B, please use it within the allowable radial load range.

/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step

###

Samples:
US$ 600/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Available

|


###

Rating table
Output speed (rpm) 5 10 15 20 25 30 40 50 60
Model Speed ratio code R
Speed ratio
Output torque (nm)
Input capacity (kw)
Axis rotation Shell rotation
RV-10C 27 27 26 136
/ 0.09
111
/ 0.16
98
/ 0.21
90
/ 0.25
84
/ 0.29
80
/ 0.34
73
/ 0.41
68
/ 0.47
65
/ 0.54
RV-27C 36.57 1,390/38 1352/38 368
/ 0.26
299
/ 0.42
265
/ 0.55
243
/ 0.68
227
/ 0.79
215
/ 0.90
197
/ 1.10
184
/ 1.29
174
/ 1.46
RV-50C 32.54 1,985/61 1924/61 681
/ 0.48
554
/ 0.77
490
/ 1.03
450
/ 1.26
420
/ 1.47
398
/ 1.67
366
/ 2.04
341
/ 2.38
 
RV-100C 36.75 36.75 35.75 1,362
/ 0.95
1,107
/ 1.55
980
/ 2.05
899
/ 2.51
841
/ 2.94
796
/ 3.33
730
/ 4.08
   
RV-200C 34.86 1,499/43 1456/43 2,724
/ 1.90
2,215
/ 3.09
1,960
/ 4.11
1,803
/ 5.04
1,686
/ 5.88
1,597
/ 6.69
     
RV-320C 35.61 2,778/78 2700/78 4,361
/ 3.04
3,538
/ 4.94
3,136
/ 6.57
2,881
/ 8.05
2,690
/ 9.41
       
RV-500C 37.34 3,099/83 3016/83 6,811
/ 4.75
5,537
/ 7.73
4,900
/ 10.26
4,498
/ 12.56
         
Note: 1. The allowable output speed is affected by duty cycle, load, and ambient temperature. When the allowable output speed is above NS1, please consult our company about the precautions.
2. Calculate the input capacity (kW) by the following formula.
Input capacity (kW)=2π*N*T/60*η/100*10*10*10 N: output speed (RPM)
T: output torque (nm)
η =  75: reducer efficiency (%)
The input capacity is the reference value.
3. When using the reducer at a low temperature, the no-load running torque will increase, so please pay attention when selecting the motor.
(refer to low-temperature characteristics)

###

T0
Rated torque
(note. 7)
N0
Rated output speed
K
Rated life
TS1
Allowable starting and stopping torque
TS2
Instantaneous maximum allowable torque
NS0
Allowable maximum output speed
(Note 1)
Backlash Empty range MAX. Angle transfer Error MAX. Start efficiency represents the value MO1
MO1. Permissible moment (Note.4)
MO2
Momstant moment Permissible moment
Wr
Allowable radial load (Note.9)
I
Converted value of inertia moment input shaft
(note. 5)
Moment of inertia I
(I = GD2 / 4) standard center gear
weight
(Nm) (rpm) (h) (Nm) (Nm) (r/min) (arc.sec.) (arc.min.) (arc.sec.) (%) (Nm) (Nm) (N) (kgm2) (kgm2) (kg)
98 15 6,000 245 490 80 1.0 1.0 70 75 686 1,372 5,755 1.38×10-5 0.678×10-3 4.6
264.6 15 6,000 662 1,323 60 1.0 1.0 70 80 980 1,960 6,520 0.550×10-4 0.563×10-3 8.5
490 15 6,000 1,225 Bolt fastening 2,450 50 1.0 1.0 60 75 1,764 3,528 9,428 1.82×10-4 0.363×10-2 14.6
Through-hole bolt fastening 1,960
980 15 6,000 2,450 Bolt fastening 4,900 40 1.0 1.0 50 80 2,450 4,900 11,802 0.475×10-3 0.953×10-2 19.5
Through-hole bolt fastening 3,430
1,960 15 6,000 4,900 Bolt fastening 9,800 30 1.0 1.0 50 80 8,820 17,640 31,455 1.39×10-3 1.94×10-2 55.6
Through-hole bolt fastening 7,350
3,136 15 6,000 7,840 15,680 25 1.0 1.0 50 85 20,580 39,200 57,087 0.518×10-2 0.405×10-1 79.5
4,900 15 6,000 12,250 24,500 20 1.0 1.0 50 80 34,300 78,400 82,970 0.996×10-2 1.014×10-1 154
 
4. The allowable torque will vary according to the thrust load. Please confirm by the allowable moment line diagram.
5. For moment stiffness and torsion stiffness, please refer to the inclination angle and torsion angle calculation.
6. Rated torque refers to the torque value reflecting the rated life at rated output speed, not the data showing the upper limit of load. Please refer to the glossary (p.81) and product selection flow chart (p.82).
7. The above specifications are obtained according to the company’s evaluation method. Please confirm that the product meets the use conditions of carrying real aircraft before use.
8. When the radial load is within dimension B, please use it within the allowable radial load range.

A Mathematical Model of a Cycloid Gearbox

Having a gearbox with a cycloidal rotor is an ideal design for a car or any other vehicle, as the cycloidal design can reduce the amplitude of vibration, which is a key component in car performance. Using a cycloidal gearbox is also a great way to reduce the amount of friction between the gears in the gearbox, which can help to reduce noise and wear and tear. A cycloidal gearbox is also a very efficient design for a vehicle that needs to perform under high loads, as the gearbox can be very robust against shock loads.helical gearbox

Basic design principles

cycloidal gearboxes are used for precision gearing applications. Cycloidal drives are compact and robust and offer lower backlash, torsional stiffness and a longer service life. They are also suitable for applications involving heavy loads.
Cycloidal drives are compact in size and provide very high reduction ratios. They are also very robust and can handle shock loads. Cycloidal drives are ideally suited to a wide range of drive technologies. Cycloidal gears have excellent torsional stiffness and can provide a transmission ratio of 300:1. They can also be used in applications where stacking multiple gear stages is not desired.
In order to achieve a high reduction ratio, cycloidal gears must be manufactured extremely accurately. Cycloidal gears have a curved tooth profile that removes shear forces at any point of contact. This provides a positive fit for the gear disc. This profile can be provided on a separate outer bushing or as an internal gear profile insert.
Cycloidal drives are used in marine propulsion systems, where the load plate rotates around the X and Y axis. The plate is anchored by a threaded screw hole arranged 15mm away from the center.
A secondary carrier body is used in a cycloidal gearbox to support the load plate. The secondary carrier body is composed of a mounting carrier body and a secondary carrier disc.

Low friction

Several studies have been conducted to understand the static problems of gears. In this paper, we discuss a mathematical model of a low friction cycloidal gearbox. This model is designed to calculate various parameters that affect the performance of the gearbox during production.
The model is based on a new approach that includes the stiction effect and the nonlinear friction characteristic. These parameters are not covered by the conventional rule of thumb.
The stiction effect is present when the speed direction is changed. During this time, the input torque is required to prevail over the stiction effect to generate movement. The model also enables us to calculate the magnitude of the stiction effect and its breakaway speed.
The most important thing is that the model can be used to improve the dynamic behavior of a controlled system. In this regard, the model has a high degree of accuracy. The model is tested in several quadrants of the gearbox to find the optimum stiction breakaway speed. The simulation results of the model show that this model is effective in predicting the efficiency of a low friction cycloidal gearbox.
In addition to the stiction model, we also studied the efficiency of a low friction cycloidal reducer. The reduction ratio of this gearbox was estimated from the formula. It is found that the ratio approaches negative infinity when the motor torque is close to zero Nm.

Compact

Unlike standard planetary gears, cycloidal gearboxes are compact, low friction and feature virtually zero backlash. They also offer high reduction ratios, high load capacity and high efficiency. These features make them a viable option for a variety of applications.
Cycloid disks are driven by an eccentric input shaft. They are then driven by a stationary ring gear. The ring gear rotates the cycloidal disk at a higher rate. The input shaft rotates nine times to complete a full rotation. The ring gear is designed to correct the dynamic imbalance.
CZPT cycloidal gearheads are designed for precision and stable operation. These reducers are robust and can handle large translocations. They also offer high overload protection. They are suitable for shock wave therapy. CZPT gearheads are also well suited for applications with critical positioning accuracy. They also require low assembly and design costs. They are designed for long service life and low hysteresis loss.
CZPT cycloidal reducers are used in a variety of industrial applications, including CNC machining centers, robot positioners and manipulators. They offer a unique design that can handle high forces on the output axis, and are especially suitable for large translocations. These gearheads are highly efficient, reducing costs, and are available in a variety of sizes. They are ideal for applications that require millimetre accuracy.

High reduction ratios

Compared to other gearboxes, cycloidal gearboxes offer high reduction ratios and small backlash. They are also less expensive. Cycloid gearboxes can be used in a variety of industries. They are suitable for robotic applications. They also have high efficiency and load capacity.
A cycloidal gearbox works by rotating a cycloidal disc. This disc contains holes that are bigger than the pins on the output shaft. When the disc is rotated, the output pins move in the holes to generate a steady output shaft rotation. This type of gearbox does not require stacking stages.
Cycloid gearboxes are usually shorter than planetary gearboxes. Moreover, they are more robust and can transmit higher torques.
Cycloid gearboxes have an eccentric cam that drives the cycloidal disc. The cycloidal disc advances in 360deg/pivot/roller steps. It also rotates in an eccentric pattern. It meshes with the ring-gear housing. It also engages the internal teeth of the ring-gear housing.
The number of lobes on the cycloidal disc is not sufficient to generate a good transmission ratio. In fact, the number of lobes must be less than the number of pins surrounding the cycloidal disc.
The cycloidal disc is rotated by an eccentric cam that extends from the base shaft. The cam also spins inside the cycloidal disc. The eccentric motion of the cam helps the cycloidal disc rotate around the pins of the ring-gear housing.helical gearbox

Reducing amplitude of the vibration

Various approaches to reducing amplitude of the vibration in a cycloidal gearbox have been studied. These approaches are based on the kinematic analysis of gearbox.
A cycloidal gearbox is a gearbox that consists of bearings, gears, and an eccentric bearing that drives a cycloidal disc. This gearbox has a high reduction ratio, which is achieved by a series of output shaft pins that drive the output shaft as the disc rotates.
The test bench used in the studies has four sensors. Each sensor acquires signals with different signal processing techniques. In addition, there is a tachometer that acquires variations in rotational velocity at the input side.
The kinematic study of the robotic gearbox was performed to understand the frequency of vibrations and to determine whether the gearbox is faulty. It was found that the gearbox is in healthy operation when the amplitude of the x and y is low. However, when the amplitude is high, it is indicative of a malfunctioning element.
The frequency analysis of vibration signals is performed for both cyclostationary and noncyclostationary conditions. The frequencies that are selected are those that appear in both types of conditions.

Robust against shock loads

Compared to traditional gearboxes, cycloidal gearboxes have significant benefits when it comes to shock loads. These include high shock-load capacity, high efficiency, reduced cost, lower weight, lower friction, and better positioning accuracy.
Cycloid gears can be used to replace traditional planetary gears in applications where inertia is important, such as the transportation of heavy loads. They have a lighter design and can be manufactured to a more compact size, which helps reduce cost and installation expense. Cycloid gears are also able to provide transmission ratios of up to 300:1 in a small package.
Cycloid gears are also suitable for applications where a long service life is essential. Their radial clamping ring reduces inertia by up to 39%. Cycloid gears have a torsional stiffness that is five times higher than that of conventional planetary gears.
Cycloid gearboxes can provide significant improvements in concrete mixers. They are a highly efficient design, which allows for important innovations. They are also ideal for servo applications, machine tools, and medical technology. They feature user-friendly screw connections, effective corrosion protection, and effective handling.
Cycloid gears are especially useful for applications with critical positioning accuracy. For example, in the control of large parabolic antennas, high shock load capacity is required to maintain accuracy. Cycloid gears can withstand shock loads up to 500% of their rated torque.helical gearbox

Inertial effects

Various studies have been conducted to investigate the static problems of gears. However, there is still a need for a proper model to investigate the dynamic behaviour of a controlled system. For this, a mathematical model of a cycloidal gearbox has been developed. The presented model is a simple model that can be used as the basis for a more complex mechanical model.
The mathematical model is based on the cycloidal gearbox’s mechanical construction and has a nonlinear friction characteristic. The model is able to reproduce the current peaks and breaks at standstill. It also considers the stiction effect. However, it does not cover backlash or torsional stiffness.
This model is used to calculate the torque generating current and the inertia of the motor. These values are then compared with the real system measurement. The results show that the simulation results are very close to the real system measurement.
Several parameters are considered in the model to improve its dynamic behaviour. These parameters are calculated from the harmonic drive system analysis. These are torque-generating current, inertia, and the contact forces of the rotating parts.
The model has a high level of accuracy and can be used for motor control. It is also able to reproduce the dynamic behaviour of a controlled system.
China High Torque RV Reducer Cycloidal Gearbox for Robot Arm     cycloidal drive motorChina High Torque RV Reducer Cycloidal Gearbox for Robot Arm     cycloidal drive motor
editor by czh 2023-03-24

China RVC RVE 10C 27C 50C 100C 200C 320C 20E 40E 80E 110W 160W 320W High Precision Reduction Gear Robot Arm Rv Gearbox Reducer gearbox and motor

Applicable Industries: Manufacturing Plant, Printing Shops
Weight (KG): 15
Customized support: ODM, OEM
Gearing Arrangement: Cycloidal
Output Torque: 600NM
Input Speed: 3000RPM
Output Speed: depend on the ratio
Ratio: .5-.4
Packaging Details: Foam Box>Strong Carton>Wooden Box
Port: ZheJiang /HangZhou

Model Selection ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations. Detailed Images Product Parameters Also we do have Harmonic Drive Gearbox. Pls Contact Us For Details. Typical Application Precision Cycloidal Gearbox is widely used in industrial machinery fields such as machine tool of four-5-axis, pick-up manipulator for die-casting, industrial robot, die-casting feeding machine, manipulator for punching machine, AGV d river, bottle-making machine, UV Printer and etc. Other Products Why Choose Us

Stock In Hand Standard Type Non-Standard Type Customized Type
After Payment In 10 Days 15-30 Days Depend on the condition

Key Market Insights Related to Worm Reduction Gearboxes

A gearbox is a mechanical device that allows you to shift between different speeds or gears. It does so by using one or more clutches. Some gearboxes are single-clutch, while others use two clutches. You can even find a gearbox with closed bladders. These are also known as dual clutches and can shift gears more quickly than other types. Performance cars are designed with these types of gearboxes.
gearbox

Backlash measurement

Gearbox backlash is a common component that can cause noise or other problems in a car. In fact, the beats and sets of gears in a gearbox are often excited by the oscillations of the engine torque. Noise from gearboxes can be significant, particularly in secondary shafts that engage output gears with a differential ring. To measure backlash and other dimensional variations, an operator can periodically take the output shaft’s motion and compare it to a known value.
A comparator measures the angular displacement between two gears and displays the results. In one method, a secondary shaft is disengaged from the gearbox and a control gauge is attached to its end. A threaded pin is used to secure the differential crown to the secondary shaft. The output pinion is engaged with the differential ring with the aid of a control gauge. The angular displacement of the secondary shaft is then measured by using the dimensions of the output pinion.
Backlash measurements are important to ensure the smooth rotation of meshed gears. There are various types of backlash, which are classified according to the type of gear used. The first type is called circumferential backlash, which is the length of the pitch circle around which the gear rotates to make contact. The second type, angular backlash, is defined as the maximum angle of movement between two meshed gears, which allows the other gear to move when the other gear is stationary.
The backlash measurement for gearbox is one of the most important tests in the manufacturing process. It is a criterion of tightness or looseness in a gear set, and too much backlash can jam a gear set, causing it to interface on the weaker part of its gear teeth. When backlash is too tight, it can lead to gears jamming under thermal expansion. On the other hand, too much backlash is bad for performance.

Worm reduction gearboxes

Worm reduction gearboxes are used in the production of many different kinds of machines, including steel and power plants. They are also used extensively in the sugar and paper industries. The company is constantly aiming to improve their products and services to remain competitive in the global marketplace. The following is a summary of key market insights related to this type of gearbox. This report will help you make informed business decisions. Read on to learn more about the advantages of this type of gearbox.
Compared to conventional gear sets, worm reduction gearboxes have few disadvantages. Worm gear reducers are commonly available and manufacturers have standardized their mounting dimensions. There are no unique requirements for shaft length, height, and diameter. This makes them a very versatile piece of equipment. You can choose to use one or combine several worm gear reducers to fit your specific application. And because they have standardized ratios, you will not have to worry about matching up multiple gears and determining which ones fit.
One of the primary disadvantages of worm reduction gearboxes is their reduced efficiency. Worm reduction gearboxes usually have a maximum reduction ratio of five to sixty. The higher-performance hypoid gears have an output speed of around ten to twelve revolutions. In these cases, the reduced ratios are lower than those with conventional gearing. Worm reduction gearboxes are generally more efficient than hypoid gear sets, but they still have a low efficiency.
The worm reduction gearboxes have many advantages over traditional gearboxes. They are simple to maintain and can work in a range of different applications. Because of their reduced speed, they are perfect for conveyor belt systems.
gearbox

Worm reduction gearboxes with closed bladders

The worm and the gear mesh with each other in a combination of sliding and rolling movements. This sliding action is dominant at high reduction ratios, and the worm and gear are made of dissimilar metals, which results in friction and heat. This limits the efficiency of worm gears to around thirty to fifty percent. A softer material for the gear can be used to absorb shock loads during operation.
A normal gear changes its output independently once a sufficient load is applied. However, the backstop complicates the gear configuration. Worm gears require lubrication because of the sliding wear and friction introduced during movement. A common gear arrangement moves power at the peak load section of a tooth. The sliding happens at low speeds on either side of the apex and occurs at a low velocity.
Single-reduction gearboxes with closed bladders may not require a drain plug. The reservoir for a worm gear reducer is designed so that the gears are in constant contact with lubricant. However, the closed bladders will cause the worm gear to wear out more quickly, which can cause premature wear and increased energy consumption. In this case, the gears can be replaced.
Worm gears are commonly used for speed reduction applications. Unlike conventional gear sets, worm gears have higher reduction ratios. The number of gear teeth in the worm reduces the speed of a particular motor by a substantial amount. This makes worm gears an attractive option for hoisting applications. In addition to their increased efficiency, worm gears are compact and less prone to mechanical failure.

Shaft arrangement of a gearbox

The ray-diagram of a gearbox shows the arrangement of gears in the various shafts of the transmission. It also shows how the transmission produces different output speeds from a single speed. The ratios that represent the speed of the spindle are called the step ratio and the progression. A French engineer named Charles Renard introduced five basic series of gearbox speeds. The first series is the gear ratio and the second series is the reverse gear ratio.
The layout of the gear axle system in a gearbox relates to its speed ratio. In general, the speed ratio and the centre distance are coupled by the gear axles to form an efficient transmission. Other factors that may affect the layout of the gear axles include space constraints, the axial dimension, and the stressed equilibrium. In October 2009, the inventors of a manual transmission disclosed the invention as No. 2. These gears can be used to realize accurate gear ratios.
The input shaft 4 in the gear housing 16 is arranged radially with the gearbox output shaft. It drives the lubricating oil pump 2. The pump draws oil from a filter and container 21. It then delivers the lubricating oil into the rotation chamber 3. The chamber extends along the longitudinal direction of the gearbox input shaft 4, and it expands to its maximum diameter. The chamber is relatively large, due to a detent 43.
Different configurations of gearboxes are based on their mounting. The mounting of gearboxes to the driven equipment dictates the arrangement of shafts in the gearbox. In certain cases, space constraints also affect the shaft arrangement. This is the reason why the input shaft in a gearbox may be offset horizontally or vertically. However, the input shaft is hollow, so that it can be connected to lead through lines or clamping sets.
gearbox

Mounting of a gearbox

In the mathematical model of a gearbox, the mounting is defined as the relationship between the input and output shafts. This is also known as the Rotational Mount. It is one of the most popular types of models used for drivetrain simulation. This model is a simplified form of the rotational mount, which can be used in a reduced drivetrain model with physical parameters. The parameters that define the rotational mount are the TaiOut and TaiIn of the input and output shaft. The Rotational Mount is used to model torques between these two shafts.
The proper mounting of a gearbox is crucial for the performance of the machine. If the gearbox is not aligned properly, it may result in excessive stress and wear. It may also result in malfunctioning of the associated device. Improper mounting also increases the chances of the gearbox overheating or failing to transfer torque. It is essential to ensure that you check the mounting tolerance of a gearbox before installing it in a vehicle.

China RVC RVE 10C 27C 50C 100C 200C 320C 20E 40E 80E 110W 160W 320W High Precision Reduction Gear Robot Arm Rv Gearbox Reducer     gearbox and motor	China RVC RVE 10C 27C 50C 100C 200C 320C 20E 40E 80E 110W 160W 320W High Precision Reduction Gear Robot Arm Rv Gearbox Reducer     gearbox and motor
editor by czh

China ZD Leader 220BX 80E High Precision Low Backlash Planetary Industrial Robot Arm Gearbox Reducer With Flange cvt gearbox

Warranty: 1 year
Applicable Industries: Industrial Robot
Weight (KG): 13.1 KG
Gearing Arrangement: Cycloidal
Output Torque: 290.4-779.4 N.M, 290.4~779.4N.M
Input Speed: 3000 rpm
Output Speed: 19.6-52.6 rpm
Product Name: Robot Arm Reducer
Application: Robotic
Brand: ZD Leader
Ratio: 57:1~153:1
Life: 6000 hours(rated)
Packaging Details: Foam Box>Strong Carton>Wooden Box
Port: ZheJiang / HangZhou

Detailed Images Product Parameters Typical Application Precision Cycloidal Gearbox is widely used in industrial machinery fields such as machine tool of four-5-axis, pick-up manipulator for die-casting, industrial robot, die-casting feeding machine, manipulator for punching machine, AGV driver, bottle-making machine and etc. Recommend Products Click and check out more products you’re looking for. Customized Product Service Why Choose Us FAQ Q: What’re your main products?A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.Q: How to select a suitable motor?A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.Q: Do you have a customized service for your standard motors?A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.Q: Do you have an individual design service for motors?A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost.Q: What’s your lead time?A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Stock In HandStandard TypeNon-Standard TypeCustomized Type
After PaymentIn 10 Days15-30 DaysDepend on the condition

Types of Gearboxes Used in Wind Turbines

Many manufacturers of wind turbines have chosen different solutions for the drive train of the turbines. Most prefer gearboxes because of their durability. These have several design features that make them well suited to shocks, stresses and wear. Regardless of the type of gearbox used, continuous maintenance and monitoring can extend the lifespan of these machines. Performing these tasks regularly can help detect and resolve any problems before they become serious. Here are some of the problems associated with gearboxes.
gearbox

Coaxial helical gearbox

The R series helical inline gearbox is a high-quality speed reducer for heavy-duty industrial applications. These units are designed with increased power density in mind and are equipped with various cooling options. High-grade seals and lubricants help to increase efficiency and minimize thermal loading. They are ATEX-compliant. Their reversible modules are an excellent choice for high-speed applications, such as compressors, compressor blowers, and pumps.
The normal module set of helical gearbox is manufactured using the same tooth-cutting techniques as spur gears. This allows the production of higher-quality, more economical, and more compact helical gears. Although the performance of helical gears is lower than spur gears, they are durable and capable of transferring motion and power between two shafts. And because they are able to handle a much greater load, they are preferred for heavy-duty applications.
The main tooth form of a helical gearbox presents fixed velocity ratios, even if the center gap is not completely set. This requirement is sometimes referred to as the fundamental rule of gearing. A helical gearbox is similar to a set of paper spur gears, with the exception that the sections must stagger in opposite directions. There are two kinds of helical gears for parallel shafts: left-handed and right-handed.
The Industrial Gearbox market is segmented based on product type, application, and geography. The report analyzes the competitive scenario by segmenting the market by region, company, and type. Using this information, it estimates market size, revenue, and consumption. The report also features key information about COVID-19 and its impact on the overall industry. And it also provides a competitive landscape with industry-leading players.
Industrial gearboxes are integrated with devices and make automation processes more efficient and reliable. Increasing labor costs, shortage of skilled labor, and the ageing workforce are driving the demand for automation technologies. The industry requires newer and more advanced models and technologies to compete in the global market. You can use Coaxial helical gearbox in a variety of applications. Its benefits are endless. If you are looking for a reliable, high-performance industrial gearbox, CZPT can help you find it.
gearbox

Worm reduction gearbox

As a general rule, larger center distance worm reduction gearboxes are more efficient than smaller ones. Worm gearboxes with 2.6-in. center distances start to lose efficiency as their ratios increase. Larger center distances tend to have higher efficiency than smaller ones. However, this difference may not always be enough to justify the higher investment. Worm gear reducers typically cost less than equivalent helical units.
The use of aluminum for worm reduction gearboxes is a popular choice for those involved in the manufacturing of Packaging Equipment. In addition to being lightweight, aluminum worm reduction gearboxes have high strength and rigidity. Manufacturers recommend this choice because of its high rigidity and durability. While purchasing aluminum worm reduction gearboxes, keep in mind that they are more expensive than steel versions. However, they have a longer lifespan and are highly resistant to wear.
The worm’s helix angle is larger than a helical gear, which allows a much higher gear ratio. In addition, the worm’s body is usually longer in the axial direction than helical gears. Worm reduction gears are often left-handed, and British or Indian standards are usually followed. The worm wheel is made of hardened alloy steel PB2-C, while the gearbox case is made of hardened alloy steel FG 220 or FG 250res.
The worms in a sacrificial system are relatively safe from wear. Instead, the softer wheel is the cause of most wear and tear. The oil analysis report for a sacrificial system shows low iron levels and high copper concentrations. However, if a worm reduction gearbox has a bad reputation, you should consider purchasing a new one. If the worm gears are in good condition, the gearbox is still a viable option for a new or replacement vehicle.
The advantages of a worm reduction gearbox are numerous. The worm gearbox is widely used in industrial settings, where it provides torque and speed reduction to move products. Worm gearboxes are also commonly used in automatic security gates, which will not run in reverse. Most security gates use two separate worm drives to keep the gate in the closed position. There are also many other uses for worm reducers. You can learn more about the benefits of worm gearboxes by reading below.

Stainless steel gearbox

Stainless steel gearboxes offer a number of advantages over standard gearboxes. They match the existing stainless motor design and cost 50 percent more on average. They have stainless output shafts and housings as well as corrosion resistant hardware and a food grade lubricant. Stainless steel gearboxes feature IP 65 sealing, Viton shaft seals at the input and output shafts, and a Buna o-ring between the housings. Stainless steel gearboxes also eliminate flat surfaces and allow for a cylindrical design.
Stainless steel gearboxes are more durable than traditional cast iron or epoxy-painted gearboxes. These gearboxes can withstand repeated washdown operations without damage. They also do not collect particles or bacteria. And because stainless steel does not corrode, stainless steel gearboxes can withstand harsh environments, such as oily or greasy environments. Because stainless steel gearboxes are corrosion-resistant, they require little maintenance. They are also easier to clean and maintain, resulting in fewer replacements and a longer life span for your gearbox.
Stainless steel gearboxes are a great choice for food and other industries that require high hygiene standards. In addition to its durability, stainless steel gearboxes are ideal for applications in environments that require high levels of humidity and water. They are also life-lubricated, and they can be supplied with food-grade oils or water. The CZPT Gears stainless gearbox is a versatile option for a variety of applications.
Stainless steel gearboxes offer superior corrosion protection and can withstand harsh environments. The stainless steel cover, housing, and external hardware ensure superior corrosion protection. If you have questions about the varying benefits of stainless steel gearboxes, contact a CZPT Gear sales representative to learn more about your options. And if you are not sure which type is right for your needs, contact a CZPT Gear sales representative to find the perfect solution for your business.
gearbox

1 speed gearbox

Volkswagen Group Components manufactures the one speed gearbox. The gearbox has a high-performance electric drive motor that produces 310 Nm of torque over a wide speed range. Designed for maximum range, this gearbox uses a single gear for all driving situations. It is extremely quiet, too, and requires precision manufacturing. Volkswagen has also made it available in a reverse-gear configuration with power electronics. Volkswagen’s ID.3 EV’s e-drive motor is a perfect example of this.
The first part of the transmission corresponds to the even and odd gears, while the second part has the straighter gears. A single gear set can change between both modes. An intermediate gear set is also possible. A lastshelf gear can be formed by hydraulically betigte Lamellenkupplungen. Both types of gears can be exchanged between partial transmissions. The invention may furthermore include a transmission with the same gear ratios as the first part of the transmission.
Another variation of the one speed gearbox is the CVT. This type of gearbox has only one drive unit, which means it does not require a clutch or brake. Its power is derived from the torque generated by the Internal Combustion Engine at a particular speed. The engine cannot sustain such high torque levels above 5500 RPM, which will reduce the MPG. Also, raising the RPM will reduce the acceleration, and in severe cases may lead to an engine crash.
As the number of applications for a 1 speed gearbox increases, its design and functionality will continue to evolve. Bosch Rexroth has developed its eGFZ gearbox based on customer feedback. They are currently working on various pilot projects and hope to put it into production in the next few years. However, if you want to buy a 1 speed gearbox now, consider the benefits of a first-rate design.

China ZD Leader 220BX 80E High Precision Low Backlash Planetary Industrial Robot Arm Gearbox Reducer With Flange     cvt gearbox	China ZD Leader 220BX 80E High Precision Low Backlash Planetary Industrial Robot Arm Gearbox Reducer With Flange     cvt gearbox
editor by czh